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The mean-®eld optimization methodology has been used to recast in a single

formalism the problem of phase optimization using an arbitrary energy function

in the presence of an experimentally determined phase probability distribution

function. It results naturally in the generalization of the notions of ®gure of

merit and centroid phase where the weight of the energy re®nement is

controlled by an effective temperature in a self-consistent manner. In the limit of

high temperature, the formalism reduces of course to the Blow & Crick [Acta

Cryst. (1959), 12, 794±802] classical treatment. If a model is available, Sim's

[Acta Cryst. (1960), 13, 511±512] weighting scheme for a combined map appears

as the ®rst step of a re®nement to be conducted until self-consistency is

achieved. Assuming that MIR phases exist and that they agree reasonably well

with the phases of the model, a ®rst-order expansion gives an estimate of the

changes of weights and phases to be performed for the Fourier synthesis. This

provides for a new way of doing phase combination that might prove useful in

challenging cases of model re®nement, e.g. in large macromolecular complexes.

Thermodynamic considerations have been used to discuss the best determina-

tion of weights in phase re®nement; they also suggest that a variational

expression of maximum likelihood is best suited as a target for re®nement

because it is the free energy of the system. The formalism readily allows use of

solvent ¯attening, density averaging and the atomicity criterion to re®ne phases,

and automatically assigns a ®gure of merit to each re¯ection. Numerical tests of

the method are presented in an attempt to resolve the phase-ambiguity problem

of protein crystallography in the centrosymmetric P�1 space group using an

energy derived from the Sayre equation.

1. Introduction

The aim of this paper is to ®nd a general formalism for phase

re®nement, where an energy expressed in reciprocal space is

being minimized, in the presence of an experimental phase

probability distribution function. In the absence of any energy

re®nement, the classical probabilistic treatment of this

problem, as originally proposed by Blow & Crick (1959), is

to use ®gure-of-merit (fom) weighted structure factors and

centroid phases to calculate the best map. Then, real-space

density-modi®cation techniques are used to improve the

phases and facilitate map interpretation and model building.

Conversely, if a partial model is available, the Sim weighting

scheme is classically applied (Sim, 1959, 1960) before

combining this information with that from experiment

(Bricogne, 1976).

In the course of the work presented in a recent paper

(Delarue, 2000), where Monte Carlo techniques were

employed to break phase ambiguity in the P�1 centrosymmetric

space group, a formal analogy was drawn between the phase

problem and the so-called Ising spin system, a classical model

system intensively studied in condensed-matter physics. Here,

the analogy is further pursued by employing the technique of

mean-®eld optimization. This method is at the basis of the

solution of many statistical thermodynamics problems when-

ever the combinatorics cannot be explored exhaustively [see

e.g. Koehl & Delarue (1996) for an application in homology

modelling problems]; it is also essential to the theory of neural

networks (Hertz et al., 1991).

The formal analogy of some problems in phase determi-

nation in crystallography and the Ising system or even the

spin-glass problem has been noted earlier (Venkatesan, 1991).



The connection between crystallography and thermodynamics

was used with success for small-molecule crystallography

(Khachaturyan et al., 1981; Semenovskaya et al., 1985); in this

case, the theory was expressed in real space. Here, an entirely

new application of mean-®eld optimization theory derived

from statistical mechanics is presented in reciprocal space to

re®ne phases in protein crystallography. Statistical thermo-

dynamics is the natural framework to study this problem

because, loosely speaking, the phase distribution probability

function contributes to the entropy of the system, which

competes with the energy being re®ned. It results in the

generalization of the notion of ®gure of merit and centroid

phase of Blow & Crick (1959) with the weight of the energy

being controlled by an effective temperature in a self-consis-

tent manner.

This paper is organized as follows: in the following section,

the general theory of mean-®eld optimization of a system of

interacting re¯ections in any space group is presented, in the

presence of biased phase probability distribution functions.

Special attention is devoted to the phase-re®nement case,

with two extreme cases treated in detail: (i) the Sim weight-

ing scheme is recovered and extended to a self-consistent

formulation; and (ii) if MIR phase information is available, the

best Fourier coef®cients for a combined map are rederived:

this leads to an entire new view in phase combination. Then,

the evaluation of classical thermodynamic functions such as

entropy and free energy offers a new interpretation of the

maximum-likelihood target function. Finally, the problem of

choosing the best temperature is examined in the context of

the linear response theory of thermodynamics. Other energy

functions to be re®ned are presented in a general form, all of

them derived from real-space constraints, but expressed in

reciprocal space, and brie¯y discussed. The analytical treat-

ment of the minimization of an energy function based on

solvent ¯attening or on the atomicity criterion (for which the

formalisms are very similar) is introduced in the main text,

while most of the formal derivations on this subject are

deferred to Appendices A and B. The rest of the paper is

devoted to numerical tests of the theory.

2. General theory

Suppose that an experimental phase distribution function

P('k) is available and that one wants to choose, for each

re¯ection k, the phase 'k that minimizes a global energy

function E({'k}) to be speci®ed later. The classical statistical

thermodynamics treatment of this problem starts with the

evaluation of the partition function Z, which reads:

Z � R Q
k

d'k P�'k� exp�ÿ�E�f'kg��; �1�

where the integral over each d'k is to be performed between 0

and 2� and where �kd'kP('k) can be seen as the Lebesgue

measure of integration of the microcanonical states of

phase sets {'k} of energy E({'k}) and Boltzmann weights

exp[ÿ�E({'k})]. This partition function Z can be written, with

the help of the Dirac delta function �, as

Z � R Q
k

d'k

R Q
k

dzk

Q
k

dz�k P�'k���zk ÿ exp�i'k��

� ��z�k ÿ exp�ÿi'k�� exp�ÿ�E�fz�k; zkg��: �2�

In this form, it can be seen that it is now possible to perform

the integral over the phase probability distribution, i.e. over

the d'k. Indeed, exponentiating the � function (see for

instance Negele & Orland, 1987), using an analogue in

complex space of the well known identity

��xÿ x0� � 1=2�
R

dy exp�iy�xÿ x0�� �3�

and omitting the unessential normalization factor 1=2�,

equation (2) now reads

Z � R Q
k

d'k

R Q
k

dzk

Q
k

d�k

R Q
k

z�k
Q
k

d��kP�'k�

� expfi�k�zk ÿ exp�i'k��g expfi��k�z�k ÿ exp�ÿi'k��g
� exp�ÿ�E�fz�k; zkg��: �4�

Rearranging the order of integration, one ®nds

Z � R Q
k

dzk

Q
k

d�k

R Q
k

dz�k
Q
k

d��k exp

�
ÿ �E�fz�k; zkg�

�P
k

i�kzk � i��kz�k � log
R2�
0

P�'k� d'k exp�ÿi�k exp�i'k�

ÿ i��k exp�ÿi'k��
�
: �5�

In effect, we have now built a ®eld theory of the phase-

re®nement problem in crystallography; the �k and ��k are the

conjugate ®elds of zk and z�k, respectively. Mean-®eld theory

consists in evaluating this integral through the saddle-point

approximation, which amounts to looking for the values of the

conjugate ®elds that minimize the exponent in the integral in

(5) (see, for instance, Negele & Orland, 1987; Chaikin &

Lubensky, 1995). Altogether, this gives four equations by

differentiating the exponent in the integral with respect to zk,

z�k, i�k and i��k ; all these mean-®eld equations must be satis®ed

simultaneously:

(i) Derivatives of the exponent in (5) with respect to zk and

z�k give

i�k � ��@E=@zk�MF and i��k � ��@E=@z�k�MF; �6a�

which are the local ®elds felt by re¯ection k, to be evaluated at

the saddle point MF.

(ii) Derivatives of the exponent in (5) with respect to i�k and

i��k give

zMF
k � hexp�i'k�iMF and z�MF

k � hexp�ÿi'k�iMF; �6b�

where we have de®ned
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hexp�i'k�iMF �
� R2�

0

P�'k� d'k exp�i'k� exp�ÿi�k exp�i'k�

ÿ i��k exp�ÿi'k��
�� R2�

0

P�'k� d'k

� exp�ÿi�k exp�i'k� ÿ i��k exp�ÿi'k��
�ÿ1

�7a�

and

hexp�ÿi'k�iMF � hexp�i'k�i�MF: �7b�
Note that hexp(i'k)iMF is no longer of modulus 1 but should be

written �MF
k exp�i'MF

k � instead. �MF
k plays the role of a gener-

alized ®gure of merit [see equation (9) below].

Replacing i�k and i��k by their values using (6a), one ®nally

gets from (6b):

zMF
k �

� R2�
0

P�'k� d'k exp�i'k� exp�ÿ��@E=@zk� exp�i'k�

ÿ �@�E=@z�k� exp�ÿi'k��
�� R2�

0

P�'k� d'k

� exp�ÿ��@E=@zk� exp�i'k� ÿ ��@E=@z�k� exp�ÿi'k��
�ÿ1

�8a�
and its companion complex-conjugate equation:

zMF�
k �

� R2�
0

P�'k� d'k exp�ÿi'k� exp�ÿ��@E=@zk� exp�i'k�

ÿ ��@E=@z�k� exp�ÿi'k��
�� R2�

0

P�'k� d'k

� exp�ÿ��@E=@zk� exp�i'k�

ÿ ��@E=@z�k� exp�ÿi'k��
�ÿ1

: �8b�

More generally, equations (8) can be recast into

�MF
k �

R 2�

0 P�'k� d'k exp�i�'MF
k � exp�ÿ�Yk�R 2�

0 P�'k� d'k exp�ÿ�Yk�
; �9�

where

Yk � �@E=@zk�MF exp�i'k� � �@E=@z�k�MF exp�ÿi'k� �10�
is a real number and where we have set �'MF

k � 'k ÿ 'MF
k for

simplicity.

Equations (8) or (9) are self-consistent equations that can

be solved numerically iteratively by the Picard method (see

below) in reciprocal space, provided that the energy that one

wishes to minimize can be expressed in reciprocal space. The

route we have taken to derive them is somewhat more

complicated but completely equivalent to the simpler and

classical variational mean-®eld treatment (Chaikin &

Lubensky, 1995). A formal expression of the variational free

energy being minimized by (9) will be provided later in the

text.

Basically, what happens is that, in order to perform the

phase integration in (2), we have somewhat loosened the

constraint on the phases to lie on the unit circle and this results

naturally in the weighting of each re¯ection by a generalized

®gure of merit, which we denote by �MF
k .

Equations (8) and (9) are the main results of this paper.

They can be applied to any energy E to re®ne and extend

phases. It is interesting to check a few points about equation

(9).

First, from this equation, the Blow & Crick (1959) form-

alism is recovered immediately, provided that E depends

neither on zk nor on z�k (or � � 0), i.e. there is no phase

re®nement performed. Indeed, in this case the real part of (9)

reads

�MF
k �

R2�
0

P�'k� d'k cos �'MF
k

�R2�
0

P�'k� d'k

� hcos �'BC
k i��0; �11�

which is just the so-called Blow & Crick (1959) ®gure of

merit (again, we have set �'BC
k � 'k ÿ 'BC

k ). As usual, the

imaginary part of (9) helps de®ne the centroid phase 'BC
k .

Second, if the phase distribution is ¯at [average distribution

(AD)], i.e. contains no information [P�'k� � 1=2�], (9) reads

�MF
k �

R2�
0

d�'k cos �'MF
k exp�ÿ�Yk�

�R2�
0

d�'k exp�ÿ�Yk�

� hcos �'AD
k iP�'k��1=2�; �12�

which can often be rearranged using modi®ed Bessel functions

if Yk is linear in cos �'MF
k , as shown in the following section.

3. Application to model refinement

3.1. Phase combination

If a partial model is available, the energy to be minimized

may be expressed as
P

r[��(r)]2 in real space, where ��(r) is

the difference between the true electron density and that of

the model at grid point r. Using Parseval's theorem, this

simply amounts to minimizing

E �P
k

jFobs�k� ÿ Fcalc�k�j2

�P
k

�z�kFobs�k� ÿ exp�ÿi'calc
k �Fcalc�k��

� �zkFobs�k� ÿ exp�i'calc
k �Fcalc�k��; �13�

where it is understood that Fcalc and Fobs have been scaled

together and where we have written

Fcalc�k� � Fcalc�k� exp�i'calc
k �

and

Fobs�k� � zkFobs�k� � �k exp�i'k�Fobs�k�; �14�
anticipating the fact that all structure factors are ultimately to

be weighted by a ®gure of merit.

In this kind of situation where the energy is quadratic (and

only in this situation), the mean-®eld approximation is exact.

Indeed, in this case, all the integrals are Gaussian integrals

that can be evaluated directly and that lead to the same results



as if evaluated by saddle-point methods (see e.g. Mathews &

Walker, 1970).

Now, the derivatives @E=@zk and @E=@z�k can be calculated

explicitly. Indeed, setting

�k � Fobs�k�=Fcalc�k� �15�
and

Xk � 2Fobs�k�Fcalc�k�; �16�
one can then write, using the notations �'calc

k � 'k ÿ 'calc
k and

�'MF
k � 'k ÿ 'MF

k :

�MF
k �

� R2�
0

P�'k� d'k exp�i�'MF
k � exp��Xk�cos �'calc

k

ÿ �k�
MF
k cos �'MF

k ��
�� R2�

0

P�'k� d'k exp��Xk�cos �'calc
k

ÿ �k�
MF
k cos �'MF

k ��
�ÿ1

: �17�

This is equivalent to setting

Yk � ÿXk�cos �'calc
k ÿ �k�

MF
k cos �'MF

k � �18�
in (9).

Both real and imaginary parts of (17) will de®ne the

centroid mean-®eld phase 'MF
k and the generalized ®gure of

merit �MF
k to be used in the Fourier synthesis, through the

simple relations

�MF
k � hcos �'MF

k i�
and

tan 'MF
k � hsin 'ki�=hcos 'ki�:

It is the second term in the sum of the exponent in (17) that

makes this equation self-consistent and different from previous

treatments of the same problem.

The new mean-®eld phase 'MF
k is the combined phase and

�MF
k its combined ®gure of merit. What is appealing in this

formulation is that all kinds of information (experimental

phase information, current state of the model-building

process) are put automatically on the same footing. In other

words, phase combination is dealt with in a natural way. Other

energy constraints can also be easily taken into account,

including physical constraints on the electron-density map

(Arnold & Rossmann, 1986, see below), expressed in recipro-

cal space.

If the phase probability distribution function is known

through heavy-atom derivatives, it is always possible to set

P�'k� � exp�Ak cos 'k � Bk sin 'k � Ck cos 2'k

�Dk sin 2'k � K�; �19�
where K is a scaling factor and Ak, Bk, Ck and Dk are

Hendrickson & Lattman coef®cients (see e.g. Drenth, 1994); it

then becomes possible to write (17) in a somewhat more

compact analytical form. However, in most cases, it will be

more convenient to integrate (17) numerically.

In the following two sections, we will show that (17) reduces

to known equations in two limiting cases. We will also show

that, even in these two limiting cases, it is necessary to work

with their fully self-consistent expression.

3.2. Self-consistent Sim weighting scheme

Equation (17) can be applied in the situation where there is

no experimental a priori phase information, but a partial

model Fpart � Fcalc is available; the classical treatment of

this situation was ®rst given by Sim (1959, 1960). Indeed,

if the phase probability distribution function is ¯at,

P�'k� d'k � 1=2� d'k and, if one postulates 'MF
k � 'calc

k , the

real part of (17) gives

�MF
k �

R 2�

0 d�'k cos �'MF
k exp��Xk�1ÿ �k�

MF
k � cos �'MF

k �R 2�

0 d�'k exp��Xk�1ÿ �k�
MF
k � cos �'MF

k �
� I1��Xk�1ÿ �k�

MF
k ��=I0��Xk�1ÿ �k�

MF
k ��; �20�

where I1 and I0 are modi®ed Bessel functions of order 1 and 0,

respectively.

In (20), one is naturally led to de®ne an effective inverse

temperature �0k � ��1ÿ �k�k�, which goes to zero if �k�k goes

to 1; therefore, it has the nice feature of not doing any energy

re®nement if the ®gure of merit is already very good, i.e. close

to 1, meaning that it will not spoil the available experimental

phase information (see below).

Equation (20) is the self-consistent equation in �MF
k that is

to be compared with Sim's treatment of the same problem

(Sim, 1959, 1960). It is identical to Sim's weighting scheme at

the ®rst cycle of the Picard iteration (setting for instance

��0�k � 0) but may depart from it as the iteration process goes

along. Actually, whatever the starting value of �k, (20) still

resembles Sim's weighting scheme with the understanding that

the normalization factor 1=
P

i f 2
i has been absorbed in the

inverse temperature �, to follow Sim's original weighting-

scheme formulation (Sim, 1959, 1960). This normalization

factor appears if one decides to minimize

E �P
k

jFobs�k� ÿ Fcalc�k�j2
�P

k

jFcalc�k�j2 �21�

instead of the unnormalized energy de®ned in (13).

3.3. Best linear Fourier coefficients for the combined MIR
map

Equation (17) tells us how to modify both the structure

factors (weighting them with a ®gure of merit) and the phases

in order to satisfy the energy-re®nement criterion. This is in

contrast with what is usually performed in the calculation of a

combined map, where a linear combination of �MF
k Fobs�k� and

Fcalc�k� is used (e.g. Read, 1986) as structure factors and where

the phases are combined separately (Bricogne, 1976). We will

now show that this can actually be seen as a special case of (17)

under rather stringent but natural conditions.

To illustrate this point, let us assume that the corrections to

Blow & Crick phases are small, i.e. that the experimental phases

are not too far from the model currently being re®ned.
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Using the notation

��MF
k � 1ÿ �k�

MF
k �22�

and assuming ��MF
k � 1, which is to be expected if the

experimental phases agree reasonably well with the ones

derived from the model, i.e. �MF
k � 1, (17) now reads

�MF
k �

R 2�

0 P�'k� d'k exp�i�'MF
k � exp��Xk��

MF
k cos �'MF

k �R 2�

0 P�'k� d'k exp��Xk��
MF
k cos �'MF

k �
:

�23�
Now this can be developed to ®rst order in ��MF

k , leading to

�MF
k � �BC

k � �Xk��
MF
k �hcos2 �'MF

k i ÿ hcos �'MF
k i2���0;

�24�
where it is the second moment of cos��'MF

k � that appears in

the ®rst-order correction term. Again, the inverse temperature

� controls the weight of the energy re®nement. We note that,

at the ®rst cycle of Picard re®nement, setting ��0�k � �BC
k ,

�MF
k � �BC

k � �Xk�
2��'MF

k ���0�1ÿ �k�
BC
k �; �25�

where

�2��'MF
k ���0 � �hcos2 �'MF

k i ÿ hcos �'MF
k i2���0

� �2��'BC
k � �26�

is the width of the distribution of the cosine of the phase

difference with 'BC
k .

We recall that Fobs�k� � �kFcalc�k� and Xk � 2Fobs�k�Fcalc�k�
from (15) and (16) and set

Dk � 2�Fobs�k�2�2��'BC
k �; �27�

so the coef®cients of the Fourier synthesis now read

Fobs�k��MF
k � �BC

k �1ÿDk�Fobs�k� �DkFcalc�k�: �28�
This resembles what is usually performed during the re®ne-

ment of a model, namely the coef®cients of the Fourier

synthesis (with 'calc
k ) phases are usually taken to be a linear

combination of �BC
k Fobs�k� and Fcalc�k� (Main, 1979; Read,

1986).

The problem of choosing the right Dk coef®cient amounts to

choosing the temperature. First of all, it might be advisable to

work with normalized structure E factors rather than normal F

ones. In this case, the relationship hE2i � 1 suggests that the

inverse temperature should be chosen to be of order 1.

Second, if �2��'k�BC � 1, the weight Dk of Fcalc(k) in the

Fourier synthesis (28) is small, as it should be. We return to

this problem in a following section in more detail (x3.5).

However, whatever the choice of the temperature, even if

the ®rst-order expansion is justi®ed, i.e. if the model and the

experimental phases agree well, (25) is just the ®rst iteration of

a process that must be pursued until self-consistency is

achieved. In fact, (24) can be solved quite simply and directly

for �MF
k .

In the general case where 'BC
k departs signi®cantly from

'calc
k , the more general formula (17) is the one to be used for

phase combination and re®nement in its self-consistent

version.

3.4. Variational treatment and definition of a new target
function: maximum-likelihood revisited

If the partition function Z is known, all the usual thermo-

dynamic quantities can be calculated. For instance, using the

convention kB � 1, the energy, free energy and entropy read,

respectively:

U � ÿ@ log Z=@� �29�
F � ÿ1=� log Z � U ÿ TS �30�
S � �U ÿ F�=T: �31�

In particular, the free energy is interesting to compute ex-

plicitly since this is the quantity minimized by (9), as we will

now show. Setting log Z � log ZMF, we can write, starting from

(5),

F � EMF ÿ P
k

�MF
k YMF

k � 1=� log
R2�
0

P�'k� d'k exp�ÿ�Yk�
� �

;

�32�
where Yk is de®ned as in (10). From this expression, one can

immediately notice that the free energy F bears a strong

resemblance to the maximum-likelihood formalism (Bricogne,

1993, 1997; Murshudov et al., 1997).

Indeed, when Yk is evaluated as in (18) for the model

re®nement case,

Yk � ÿXk�cos �'calc
k ÿ �k�

MF
k cos �'MF

k �;
and recalling Xk � 2Fobs�k�Fcalc�k�; as de®ned in (16), we can

compute EMF from (13), and replace it in (32) to get

F �P
k

ÿ�MF 2
k Fobs�k�2 � Fcalc�k�2 ÿ 1=� log

� R2�
0

P�'k� d'k

� exp�ÿ�Yk�
�
: �33�

�F is the maximum likelihood of Murshudov et al. (1997), up to

an additive constant that de®nes the origin of the free energy,

if one sets �MF
k � 1 and �'MF

k � 0 in the exponential of the

integral. This is because it is expressed here in the fully self-

consistent formalism [see also the discussion on (17), the self-

consistent analogue of the Sim weighting scheme]. The

observed structure factors Fobs(k) are now weighted by their

®gure of merit �MF
k implying that the free energy will decrease

if the ®gure of merit increases as it should. The temperature

has the following simple physical interpretation:

�ÿ1 � 2�2�Fobs� ��wc; �34�
which takes into account the partial nature of the model

through �wc and the errors in the experimental measurements

of Fobs (but see also our discussion on the choice of the

temperature in the following section).

It is easy to check that one recovers (9) immediately

through the condition @F=@�k � 0. Hence, the best phase and

the ®gure of merit are the ones that minimize the free energy

F , which can be seen as a variational form of maximum like-

lihood.



It is also possible to calculate the free energy in the case

of an energy function derived from the Sayre equation (see

Appendix A), using equation (62) for Yk and equation (32) for

the free energy.

3.5. Choice of temperature

To ascertain the role of the temperature parameter, we have

attempted to see if there is any thermodynamic phase transi-

tion if one varies the temperature. To do so, the Jacobian of

the exponent in (5) was calculated and minimization of its

lowest eigenvalue with respect to the temperature was

performed. It was found that there is no thermodynamic phase

transition in the case of an energy given by (17). Therefore,

there is no preferential choice of the temperature.

However, as already in use in the crystallographic

community in different programs such as X-PLOR (Brunger

et al., 1987), one could be tempted to choose the temperature

such that the weight of the energy re®nement is the same as the

one coming from the experimental phase probability distribu-

tion function, in some sort of a null hypothesis as to the

relative importance of the two terms.

In order to do so, we resort to the theory of linear response

in thermodynamics, which states that the response coef®cient

to a perturbation in the order parameter is

� � ��2��'MF
k �: �35�

Therefore, if one wants the restoring forces to be equivalent, it

is suf®cient to set

�2��'BC
k ���0 � �2��'AD

k �P�'��1=2� �36�

using notations introduced in equations (11), (12) and (26).

This de®nes the temperature ensuring equivalence of infor-

mation coming from experimental measurements on one side

and from energy re®nement on the other side.

Another alternative would be to set the speci®c heat Cv to a

maximum as a function of temperature, i.e. to set @Cv=@� � 0.

Using the classical relationship

Cv � �2@2 log Z=@�2 � �2�hE2i ÿ hEi2�; �37�

which follows from the de®nition Cv � @U=@T, the condition

@Cv=@� � 0 can be shown to give the following self-consistent

equation:

� � 2�hE2i ÿ hEi2�=�hE3i ÿ 3hE2ihEi � 2hEi3�; �38�

where all the average quantities on the right-hand side of the

equation have to be evaluated at the same temperature as the

one speci®ed on the left-hand side of the equation. The

temperature at which Cv reaches its maximum is the one at

which ¯uctuations are maximum and where the energy and the

entropy compete most effectively.

4. Other energy functions formulated in reciprocal
space

4.1. General formalism

Energy functions that express real-space constraints but

formulated in reciprocal space can be at least of three kinds,

depending on the physical criterion that one wishes the map

to satisfy: solvent ¯attening, the atomicity criterion (Sayre

equation) and molecular averaging if there is more than one

copy of the molecule in the asymmetric unit. All of these

criteria can be expressed in the following general form

(Arnold & Rossmann, 1986, and references therein):

F�h�modified �
P

k

Fobs�k�A�h; k�: �39�

From this, it is easy to construct an energy to be minimized:

E �P
h

jFobs�h� ÿ Fmodified�h�j2: �40�

For solvent ¯attening, A�h; k� takes the form

A�h; k� � G�hÿ k�; �41�
where G(h) is the Fourier transform of the molecular envelope

function.

For the Sayre equation, it is suf®cient to set

A�h; k� � F�hÿ k�: �42�
For molecular averaging, one has

A�h; k� � 1=N
PN
i�1

Ri�h; k�Ti�h�; �43�

where Ri and Ti are given by the rotations Ci and translations

di needed to superpose the different copies of the molecules

present in the asymmetric unit (Rossmann, 1972, and refer-

ences therein):

Ti�h� � exp�ÿ2i�h � di� �44�
Ri�h; k� � 1=U

R
Ui

expfÿ2i��kÿ h�Ci�� � xig dxi: �45�

The molecular averaging techniques developed in real space

are extremely powerful, especially in the presence of some

initial experimental phase information (Bricogne, 1976).

However, they can be used just as well in reciprocal space. The

formalisms (9) and (10) developed above indicates how to

treat simultaneously the constraint of equal electron density in

the different copies of the molecule in the asymmetric unit

through equations (39), (40) and (43)±(45) and preliminary

and partial phase information in the form of a phase prob-

ability distribution function.

It is possible to do the analytical calculation of the best

phase and the ®gure of merits of each re¯ection in the case

of the Sayre energy [equations (39), (40) and (42)], in the

presence of external phase information [equation (9)]. The

calculation proceeds essentially along the lines detailed above

(see Appendix A). The result is then a set of coupled equations

to be solved simultaneously. The novelty here is that all

structure factors entering the equations are weighted by their

respective ®gure of merit, which are to be determined self-
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consistently. This new treatment may then contribute in this

respect to extend the power of direct methods beyond the ®eld

of small-molecule crystallography. The phase triplets and

quartets also enter the equations, as expected (see Appendix

A). If P('k) re¯ects the phase distribution probability function

coming from a SIR or a SIRAS experiment, one should

recover the analytical results of Hauptman (1982a,b). We have

not attempted this, however, as it goes beyond the scope of

this work. Instead, we have chosen to do a numerical study,

where the mean-®eld equations are solved iteratively. In the

following two sections, a few more details are given about the

Sayre score and the envelope score and variations thereof,

which will be used in the numerical tests presented below.

4.2. Sayre score

The Sayre equation is the reciprocal-space equivalent of a

simple relationship in real space, �(r) / �2(r), which is valid

for sharply peaked electron-density maps (the so-called

atomicity condition). The Sayre equation reads (Sayre, 1952)

F�h� � g�h�P
k

F�k�F�hÿ k�; �46�

where g(h) is a spherically averaged resolution-dependent

form factor, which is dif®cult to estimate analytically at low

resolution.

Let us call FS(h) the right-hand side of this equation,

ignoring the g(h) form factor.

FS�h� �
P

k

F�k�F�hÿ k�; i.e. F�h� � g�h�FS�h�: �47�

If the g(h) function is a slowly varying function, these Sayre

structure factors FS(h) should scale well with the original F(h)

structure factors. Therefore, we ask for a high correlation

coef®cient between F(h) and FS(h). This has been been shown

to work well in a simulated-annealing study of the same

problem (Delarue, 2000), using an energy WSayre such that

WSayre � 1ÿ Corr�F�h�;FS�h��; �48�
where Corr�A;B� stands for the correlation coef®cient

between vectors A and B:

Corr�A;B� � �hABi ÿ hAihBi�
� �hA2i ÿ hAi2�ÿ1=2�hB2i ÿ hBi2�ÿ1=2: �49�

It turns out that it is not necessary to calculate this correlation

coef®cient over the entire set of re¯ections but that a mere

subset of the 1000 or so most intense ones are suf®cient to

obtain a very accurate Sayre score. To speed up the calculation

of the energy WSayre, the list of re¯ections k(h) contributing to

the summation in (46) is stored once and for all for each

re¯ection h. We have found it easier to work with correlation

coef®cients rather than with residuals as in (40).

Formally, trying to break down the sign ambiguity in the

centrosymmetric space group P�1 is equivalent to trying to

break the phase-ambiguity problem in the SIR case in protein

crystallography. It may be in order here to mention that there

is a long history of using the Sayre equation to tackle this

problem, which has recently regained attention (see Weinzierl

et al., 1969; Coulter, 1971; Hendrickson, 1971; Giacovazzo &

Siliqi, 1994).

4.3. Envelope score

It is also possible to express in reciprocal space the a priori

knowledge of the form of the electron density outside the

protein, which should be constant and equal to zero. One way

to express it is to impose ��r� � ��r�Env�r�, where Env(r) is

the characteristic function of the envelope of the molecule; if

G(k) is the Fourier transform of Env(r), one can de®ne

another energy criterion, in reciprocal space:

Wenv � 1ÿ Corr�F�h�;Fenv�h�� �50�
with the notation

Fenv�h� �
P

k

F�k�G�hÿ k� �51�

as de®ned in (39) and (41).

Hence, one can try to minimize a combination of the two,

controlled by the mixing parameter �:

Wtot � �WSayre � �1ÿ ��Wenv: �52�
Recent attempts to use the envelope information to break

down the phase-ambiguity problem in the SIR case can be

found in Gu et al. (1997) and Zheng et al. (1997).

5. Three different test cases using the Sayre equation

5.1. Mean-field optimization techniques in P�1�1

For simplicity, most of the numerical tests presented in this

work were performed in the centrosymmetric P�1 space group,

where phases are constrained to take one of two values, 0 or

180�. Therefore, the integrals in (9) are actually a sum of only

two terms, leading to the simple expression

m�k� � ÿ tanhf��@E=@m�k��g: �53�
At T � 0, m(k) can take only two values: �1 or ÿ1 and it is

the sign of the re¯ection k. At intermediate temperatures, it

can take any value between ÿ1 and �1.

Alternatively, the same method could be used to decide

which of the two phases '�2�k and '�1�k given by the Harker

construct is the true one in the SIR method for each re¯ection.

In this case, the phase 'k of re¯ection k would be given by

2'k � �'�2�k � '�1�k � �m�k��'�2�k ÿ '�1�k �: �54�
It is possible to give a simple physical interpretation to (53) by

drawing a formal comparison with the well known Ising spin

system, in which now m(k) is the magnetization of a spin k

interacting with an assembly of spins through the following

bilinear energy:

E � ÿP
k;k0

Jk;k0m�k�m�k0�: �55�

In the nearest-neighbour Ising-model system, the sum is

restricted to those sites k0 that are close in space to k, a

condition that we denote by k0 2 N(k). By convention, each

pair interaction is counted only once in the sum. Jk,k0 is the



coupling constant, which will be assumed here to be site

independent, for simplicity, and equal to J (J > 0).

Basically, the mean-®eld formula reads, in the absence of an

external ®eld (see for instance Reif, 1965),

m�k� � tanh �J
P

k02N�k�
m�k0�

" #
� ÿ tanh��Hlocal�; �56�

where � � 1=kBT is the inverse temperature and where

Hlocal � ÿJ
P

k02N�k�m�k0� is the local ®eld, which is different

for each spin k and is sometimes called the mean ®eld felt at

position k. One can check that (53) gives (56) directly by

calculating explicitly the derivative of the energy E in (55).

Physically, the interpretation of (53) and (56) is straight-

forward: for a given temperature, a high positive (negative)

value of Hlocal forces m(k) towards ÿ1 (�1), respectively. A

low temperature (high value of �) will increase the contrast

between the two different possible values of m(k) and freeze

m(k) into either one of them, depending essentially on the sign

of Hlocal.

On a practical level, equation (53) was solved numerically,

replacing E by W from equation (48) or (52) and evaluating

the derivative numerically (Press et al., 1992). An entire

update of the spin system (typically 1000 re¯ections) takes

about 4±8 min CPU on a DEC alpha PWS500 workstation,

with an EV6 CPU card, depending on whether the energy is

de®ned by (48) or (52).

In order to avoid oscillation problems and ensure conver-

gence, only part of the corrections to the m(k) set of values is

taken into account at each step, according to the scheme (the

so-called Picard method)

m�k��n�1� � m�k��n� � 
�m�k�calc ÿm�k��n��; �57�
where n is the cycle number and m(k)calc is given by the right-

hand side of (53). Typically, a value of 0.10±0.20 was taken for


 and 30±50 cycles were necessary to achieve convergence. We

note in passing that (57) is nothing but a (relaxation) Langevin

equation at zero noise and friction coef®cient 1=
. This is

because (57) can be rewritten, taking into account (33), to give

@m�k�=@n � ÿ
�@F=@m�k��:
This shows that @F=@n is a negative number and it therefore

guarantees that the free energy of the system will decrease

along the iteration process.

5.2. Protein and structure-factor calculations

Working in space group P�1 is far less unnatural than it may

seem at ®rst glance; indeed, Berg and co-workers were able a

few years ago to crystallize an equal mixture of a protein and

its enantiomer in space group P�1 (Berg & Goffeney, 1997);

direct methods failed to ®nd the solution of this crystal

structure and molecular replacement was used to locate the

natural enantiomer in the cell (Zawadzke & Berg, 1993). The

protein used by these authors was rubredoxin, a small protein

whose unnatural enantiomer was chemically synthesized. The

same protein was used here, but with calculated structure

factors, calculated using the CCP4 suite of programs (Colla-

borative Computational Project, Number 4, 1994). The Zn2+

metal ion was omitted to avoid any strong bias in the Patterson

and to satisfy the hypothesis of equal atoms in the unit cell.

Sometimes, errors were voluntarily added to simulate the

effect of measurement errors. The resolution was limited to

2.5 AÊ . Calculations were performed with both raw structure

factors and normalized E-value structure factors.

The crystallographic coordinates of rubredoxin were taken

from the PDB (code 6rxn). The molecule was put in space

group P�1 and care was taken that the packing was correct, i.e.

that no crystallographically equivalent molecule would bump

into any other molecule in the cell.

5.3. Generalization of mean-field treatment to P1, with a
(discrete) set of four phases

It is possible to simplify equation (9) if the phases are

constrained to take only one of the four following values: 0, 90,

180, 270�, thereby providing a crude sampling of the set of

phases in P1. This kind of sampling is also often used in small-

molecule crystallography and direct methods. In this case, the

correlation coef®cient in equation (49) has to be calculated in

the complex plane, which can be performed by replacing every

product AB by AB�. Then equation (9) simpli®es to

�k cos 'MF
k � ÿ sinh �Y

�1�
k =�cosh�Y

�1�
k � cosh �Y

�2�
k � �58a�

and

�k sin 'MF
k � ÿ sinh �Y

�2�
k =�cosh �Y

�1�
k � cosh�Y

�2�
k �; �58b�

where

Y
�1�
k � �@E=@zk�MF � �@E=@z�k�MF

and

Y
�2�
k � i�@E=@zk�MF ÿ i�@E=@z�k�MF

are both real numbers. The interpretation is the same as

before: if Y
�1�
k is large, then m�k� � �1 ('MF

k � 0 or �),

whereas, if Y
�2�
k is large, then m�k� � �i ('MF

k � ��=2).

5.4. Overcoming wrongly biased phase probability
distribution functions

Suppose phases are restricted to take one of only two

values, with probabilities pmax and pmin, respectively

(pmax � 1ÿ pmin). If there is no experimental error, then most

likely the right phase will be the one for which the probability

is maximum. However, what is the best choice of phases if

errors are known to be present? If an energy function E is

available, mean-®eld optimization can be used to discriminate

between the two possible phases, even in the presence of a

wrongly biased phase distribution function. Indeed, equation

(9) reads in this case:

m�k� � ÿmmax�k� tanh��mmax�k�@E=@m�k� � ��; �59�
where � � 1=2 log��1ÿ pmax�=pmax�.

This indeed reduces to equation (53) if pmax � 1=2. If pmax is

larger than 1=2, (59) tends to force m(k) to take the mmax(k)
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value, as expected, through the � term. If mmax(k) is not the

true solution, then the term @E=@m�k� in (59) will tend to

balance the � term and reverse the choice of phases.

6. Numerical results

6.1. Resolving phase ambiguity in the centrosymmetric P1Å

space group

In order to test the validity of the method, different

percentages of the total number of re¯ections being re®ned

had their phases voluntarily imposed to the right value

throughout the optimization process. It was found that 10% of

imposed phases is the minimum required to get a de®nite

improvement of the phases (Fig. 1). At 0% of imposed phases,

the algorithm does not ®nd the right solution, meaning that

the minimization of the energy criterion WSayre de®ned in (48)

is not suf®cient to break down the phase ambiguity.

The temperature at which the simulation was run is unim-

portant over the range that was tested since it only increases

the contrast between the two opposite signs of the phase

(Fig. 2); there was no thermodynamic phase transition in any

of the simulations that were run. Actually, it is better to freeze

the system at the end of the mean-®eld optimization by

lowering the temperature in the last cycle, thereby forcing the

system to adopt a value of either �1 or ÿ1 for each phase.

Adding the envelope information helped somewhat, with an

optimum in the respective weights of the Sayre score and the

envelope score as de®ned in (52) of 65 and 35%, respectively

(Fig. 3).

Finally, the method was shown to be relatively robust with

respect to experimental errors in the measurement of struc-

ture-factor moduli (data not shown). At low percentages of

imposed phases, the ®nal set of phases at which the system

arrives depends somewhat on the initial con®guration. But the

general trend is that phase information is recovered as soon as

5±10% of phases are known and imposed (Fig. 4).

6.2. Extension to other space groups

A possible extension of the method to P1, or any space

group for that matter, was also tried in the course of this work.

Here the phases are not constrained to take either of the two

values 0 and 180�, but rather a discrete set of only four values,

e.g. 0, 90, 180 and 270�, using (58a) and (58b). In this case, (48)

has to be rede®ned to work with complex numbers [basically,

each product AB in (49) has to be changed into AB�]. The

Sayre score of the right solution is then only about 0.30,

instead of 0.06 in P�1. Therefore, there is insuf®cient contrast

between the right and wrong scores of the Sayre energy

de®ned in (48), when one goes to the complex plane. Further

tests were not pursued. Other energy functions would be

needed to tackle this problem in space group P1 if there is no

other phase information available.

6.3. Overcoming errors in biased probability distribution
functions

To illustrate further the potentiality of the method, the

following test was performed, in which a priori probabilities

for the two possible phases were made unequal (0.6 vs 0.4 in

this particular example). However, errors were also deliber-

ately introduced in the process; for instance, 80% of the

phases were assigned a probability of 0.6 to their right value

and 0.4 to their wrong value, whereas, for the remaining 20%,

the probability assignment was reversed. In other words, for

those re¯ections, the phase for which the probability was the

highest was the wrong one, i.e. smax � swrong and smin � sright. At

the beginning of the simulation, phases were assigned

according to s � smax. Then, phases were re®ned according

Figure 2
In¯uence of the temperature on mean-®eld minimization, at 15% of
imposed phases. The simulations were also performed with different
starting con®gurations. Seven different temperatures are presented,
covering the thermodynamic phase transition determined by Monte
Carlo techniques (Delarue, 2000), i.e. from 0.0005 to 0.00001 (left to
right).

Figure 1
Mean-®eld optimization of phases at different percentages of imposed
phases: from left to right 30, 25, 20, 15, 10% of imposed phases. 45 cycles
were performed in each case with 
 = 0.1 using equation (57). The
quantity being minimized is the Sayre score WSayre (crosses), while the
envelope score Wenv (diamonds) and the percentage of correct phases
(continuous line) are being monitored but not minimized.



to (59), at different temperatures. For a given range of

temperature, the Sayre energy being minimized allowed us to

partially overcome the errors deliberately introduced and a

de®nite phase improvement was observed (Fig. 5).

7. Discussion

There are at least two problems in phase re®nement in protein

crystallography. One is the de®nition of an energy function for

which the right solution is the absolute minimum, with an

energy spectrum such that the `native' con®guration is well

detached from all the other (wrong) ones. In the absence of

experimental phase information, such a criterion does not

exist to our knowledge, meaning that it would be hopeless to

re®ne one trial con®guration against any existing energy

criterion (see Baker et al., 1993). Knowledge of the shape of

the molecule can help but is not usually available in real cases.

In recent work, the Terwilliger �2
R index (Terwilliger, 1999)

proved successful to break the phase ambiguity using multi-

start Monte Carlo simulations (Delarue, 2000). One inter-

esting idea would be to impose chain connectivity in the ®nal

map, as suggested by Baker et al. (1993). Some steps along

these lines for low-resolution phasing have been attempted

recently (Lunin et al., 1999). Needless to say, mean-®eld

optimization might be used with any kind of new and effective

criterion to select good maps vs bad ones. All one has to do is

to calculate @E=@zk (even numerically) and plug it in equation

(9).

In the absence of any phase probability bias, the mean-®eld

optimization technique using the Sayre-energy criterion

proved successful in the case where at least 5±10% of the

phases are known and imposed to their correct value. This

seems of limited use at ®rst sight. However, one could argue

that imposing 10% of the phases is actually easy to do in the

SIR method, provided that the space-group system allows for

that many centric re¯ections. Preliminary tests in space group

P212121 did converge to the right solution readily (data not

shown). Moreover, the set of imposed phases could come from

experimentally determined phases for some re¯ections

(Weckert & Hummer, 1997; Shen, 1998). Test calculations and

results of phase re®nement using the Sayre equation and a

handful of imposed phase re¯ections have already been

reported for protein crystallography (Mo et al., 1996). These

methods might become more widely used in the near future.

In addition, mean-®eld optimization techniques were able

to partially overcome phase probability distribution functions

plagued with some errors, with a portion of the re¯ections (up

to 30±40%) wrongly biased.

The second dif®culty is to treat in the same general form-

alism both energy re®nement and phase probability distribu-

tion functions and to ensure that the entire phase space is

being explored, avoiding false (local) minima. While energy

functions can be expressed in both real and reciprocal spaces,

the phase probability distribution functions are obviously

expressed in reciprocal space only. Usually, this leads to

alternate cycles of map improvement and model building and

then further model re®nement, in both direct and reciprocal

spaces, respectively (Podjarny et al., 1987; Main, 1990). We

show here that it is possible to work only in reciprocal space.

Indeed, mean-®eld optimization techniques provide a natural

and elegant way to do it, effectively leading to an analytical

solution giving the best phase and best weight for each

re¯ection. The idea would be then to solve the mean-®eld self-

consistent equations directly by the Picard method for each

re¯ection and, once (almost) perfect phases have been

recovered, to use automatic map building procedures

(Perrakis et al., 1999) to get an atomic model of the molecule.

Why mean-®eld optimization? Historically, mean-®eld

theory dates back to P. Weiss a century ago; it was devised to
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Figure 3
In¯uence of the � mixing parameter in equation (52) de®ning the
proportions of the envelope and Sayre scores being minimized in mean-
®eld optimization. From left to right, the � value is varied from 5 to 80%
in steps of 5%, and the system is submitted to 45 cycles of optimization.
The optimum is between 30 and 50%. The percentage of correct phases
(continuous line) is presented as well as the envelope score Wenv

(diamonds) and the Sayre score WSayre (crosses).

Figure 4
Final percentage of correct phases obtained after 40 cycles of mean-®eld
optimization (y axis) for different percentages of imposed phases (x axis).
15 different initial con®gurations are presented. The mixing parameter �
was set to 0.40 and the temperature at 0.0001.
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solve some simple problems in condensed-matter physics, e.g.

systems of interacting magnetic spins (Reif, 1965). It was

successful in many cases presented in classical textbooks

(Hertz et al., 1991; Chaikin & Lubensky, 1995). What makes it

particularly appealing is that it can be applied to a whole range

of problems involving interacting particles, where it represents

the simplest possible full analytical treatment [see e.g. Koehl &

Delarue (1996) for an application to molecular homology

modelling]. It is, in principle, the method of choice to be tried

®rst, especially if the range of ¯uctuations of the order par-

ameter, i.e. the correlation length, is less than the range of

interaction of the particles. Its validity and robustness is

especially good if each particle interacts with many neigh-

bours, because in this case the notion of `mean ®eld' is clearly

relevant and effective [see equation (56)]. Indeed, it consists in

replacing all pairwise interactions by a `local ®eld' felt by each

spin; this `local ®eld' is not known at the beginning of the

calculation but re®ned using the self-consistent mean-®eld

equation until convergence is achieved. Its immense advan-

tage is that all the phase space is explored at once.

In the case of phase re®nement, mean-®eld optimization is

exact, since the energy being re®ned is quadratic. It leads to a

new view of phase combination which should prove crucial in

tough cases of model re®nement, especially for very large

macromolecular complexes such as ribosomes or eukaryotic

RNA polymerases.

8. Conclusions

The formalism presented in this paper allows one to treat

simultaneously experimental phase information, as given by a

probablity distribution function, and re®nement of an energy

expressed in reciprocal space. The equations have all the

necessary requirements that one might expect from them:

they reduce to the Blow & Crick (1959) treatment at high

temperature, they are similar to the Sim (1959, 1960)

weighting scheme for a ¯at distribution probability function in

the presence of a partial model and a ®rst-order expansion of

phase re®nement in the presence of a reasonably good model

gives the expected form for the weighted Fourier synthesis to

be performed. However, they go beyond all these particular

situations and provide the framework to do phase re®nement

in general, in the presence of any energy function. Numerical

tests have been successfully implemented, aimed primarily at

breaking the phase-ambiguity problem in P�1 or in the SIR

method of protein crystallography with the help of the Sayre

equation.

In addition, we show in Appendix A how the mean-®eld

equations naturally lead to the use of ®gures of merit in direct

methods and how to calculate them (i.e. using the Sayre

equation).

We found the framework of thermodynamics enlightening

in at least two instances: ®rst, we could show the formal

equivalence of minimizing the free energy of the system and

the so-called maximum-likelihood prescription, at least in the

case of model re®nement. However, we must stress that in this

case, as in all the other examples of applications examined in

this work, our treatment has an additional term to impose self-

consistency. Second, mean-®eld formalism also allows a

fruitful discussion on the weight to be given to the energy

re®nement, vs the experimental phase information, through

completely general classical thermodynamics arguments.

APPENDIX A
The case of phase refinement using the Sayre equation

Here we present the explicit mean-®eld equations in the case

of the minimization of the Sayre energy W, where normalized

structure factors Ek have been used:

W �P
k

zkEk ÿ
P

h

zhzkÿhEhEkÿh

� �
� z�kEk ÿ

P
l

z�l z�kÿlElEkÿl

� �
�P

k

AkA�k: �60�

First we need to calculate the two derivatives @W=@zk and

@W=@z�k:

@W=@zk � EkA�k ÿ 2
P

h

A�hzhÿkEkEhÿk

� z�kEkEk ÿ 2Ek

P
l

z�l zlÿkElÿkEl

ÿ Ek

P
l

z�l z�kÿlEkÿlEl

� 2
P

l

P
h

z�l z�hÿlzhÿkEhÿkEkElEhÿl

� z�kE2
k ÿ 3Ek

P
l

z�l z�kÿlElÿkEl

� 2
P

h

P
l

z�l z�hÿlzhÿkEkElEhÿlEhÿk: �61�

Figure 5
Overcoming wrongly biased probability distributions in P�1, with a
proportion of wrongly biased re¯ections increasing from 10 to 40% by
steps of 10% (left to right). 20 cycles of re®nement were performed in
each case, using equation (57) and 
 = 0.25. Three temperatures have
been tried and are presented, namely T1 = 0.0003, T2 = 0.0001 and
T3 = 0.00003 and the relative probabilities of the wrong and right phase
signs was set at pmin = 0.4 (pmax = 0.6) in equation (59).



Then, using zlÿk � z�kÿl, zhÿk � z�kÿh and @W=@z�k �
f@W=@zkg�, one can again write (9) as

�MF
k �

R 2�

0 P�'k� d'k exp�i�'MF
k � exp�ÿ�Yk�R 2�

0 P�'k� d'k exp�ÿ�Yk�
;

with the understanding that

Yk � �kE2
k cos �'MF

k ÿ 3Ek

P
l

�l�kÿlEkÿlEl cos k;l

� 2Ek

P
h

P
l

�l�hÿl�kÿhElElÿhEkÿh cos �h;k;l; �62�

where all the quantities in the exponential are to be evaluated

at the mean-®eld point MF and where we have used the

following notations involving the so-called triplet and quartet

invariants:

 k;l � 'MF
l � 'MF

kÿl ÿ 'k

and

�h;k;l � 'MF
l � 'MF

hÿl � 'MF
kÿh ÿ 'k: �63�

This leads to the following free energy being minimized:

F �P
k

�
�kEk

P
l

�l�kÿlEkÿlEl cos MF
k;l

ÿ �kEk

P
h

P
l

�l�hÿl�kÿhElElÿhEkÿh cos �MF
h;k;l

ÿ 1=� log

� R2�
0

P�'k� d'k exp�ÿ�Yk�
��
: �64�

In this equation, the sums on the h and l (but not on k) indices

could be restricted to the top 1000 or so most intense re¯ec-

tions only.  MF
k;l and �MF

h;k;l are evaluated as in (63) but with

'k � 'MF
k .

APPENDIX B
The case of phase refinement using solvent flattening

For solvent ¯attening, the formalism would be very similar

[see equations (39)±(42) in the main text]. Here we only quote

the results:

Yk � �kE2
k cos �'MF

k ÿ 2Ek

P
l

�lElGkÿl cos�'k ÿ 'MF
l ÿ �kÿl�

� Ek

P
l

�lElÿk;l cos�'k ÿ 'MF
l ÿ�k;l�; �65�

where Gk exp�i�k� is the Fourier transform of the envelope

function Env(r), and where the quantity

ÿk;l exp�i�k;l� �
P

h

GhÿlGkÿh exp i��kÿh ÿ �hÿl� �66�

can be calculated once and for all before the main calculation.

The free energy then simpli®es to

F �P
k

�
�kEk

P
l

�lElGkÿl cos�'MF
k ÿ 'MF

l ÿ �kÿl�

ÿ 1=� log

� R2�
0

P�'k� d'k exp�ÿ�Yk�
��
: �67�
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manuscript.
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