
Beyond Poisson-Boltzmann: Modeling Biomolecule-Water and Water-Water

Interactions

Patrice Koehl
Department of Computer Science and Genome Center,

University of California, Davis, Davis, CA 95616, USA

Henri Orland
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We present an extension to the Poisson-Boltzmann model in which the solvent is modeled as an as-
sembly of self-orienting dipoles of variable densities. Interactions between these dipoles are included
implicitly using a Yukawa potential field. This model leads to a set of equations whose solutions give
the dipole densities; we use the latter to study the organization of water around biomolecules. The
computed water density profiles resemble those derived from molecular dynamics simulations. We
also derive an excess free energy that discriminates correct from incorrect conformations of proteins.

PACS numbers: 41.20.Cv, 82.60.Lf, 87.15.kr, 61.20.Qg

Electrostatic interactions play a central role in physics,
chemistry and biology as they directly relate to the sta-
bility of molecules as well as to the specificity of their
interactions. Understanding electrostatics is especially
important in biology: biomolecules can be considered as
large polyelectrolytes, whose properties depend on their
own charge distribution as well as on their interactions
with surrounding charged molecules. Debye-Huckel the-
ory was applied to proteins as early as in 1924 to pre-
dict the influence of ionic strength onto pH titrating
curves [1]. Later, Kauzmann [2] foresaw the importance
of electrostatics for protein stability, proposing that po-
lar (charged) groups would either compensate for each
other, or be solvated by water. Perutz [3] was able to
confirm these qualitative predictions once the first high
resolution protein structures were available, and further
emphasized in considerable more detail the role of elec-
trostatics in protein structure and function.

Many models for computing electrostatic interactions
for bio-molecules account for the solvent implicitly. The
most popular of these models derives the electrostatic
potential by solving the Poisson-Boltzmann equation
(PBE), where the solvent region is modeled as a homo-
geneous medium with a high dielectric constant (for re-
cent reviews, see [4, 5]). PBE however is only a mean-
field approximation to the multibody problem of elec-
trostatic interactions. It is based on several approxima-
tions with proved limitations. Among those, the Poisson-
Boltzmann (PB) model uses a constant and somewhat
arbitrary value for the dielectric constant of the protein
(usually set at 2-4 [6]), that abruptly jumps to 80 at the
interface between the protein and the solvent. This as-
sumption does not take into account the inhomogeneous

dielectric response of water to the presence of a charged
solute, that leads to non-uniform arrangement of water
around the solute. This solvation phenomenon is however
essential for understanding the stability and dynamics
of biomolecules and therefore cannot be ignored. The
standard PB model has been recently extended so that
the solvent is described as an assembly of freely orient-
ing dipoles placed on a lattice. This is a generalization
of the Langevin Dipoles-Protein Dipoles (LDPD) model
advocated by Warshel and collaborators [7, 8], with the
key additional feature that the dipoles are now allowed
to have a variable density at each lattice site. Such ex-
tensions, based on lattice field theory [9], have been im-
plemented in the Dipolar Poisson-Boltzmann equation
(DPBE) [10] or the Poisson-Bolzmann-Langevin equa-
tion (PBLE) [11, 12]. However, both DPBE and PBLE
are also mean field approximations, and as such do not
treat well dipolar-dipolar long-range correlations.

In this letter, we propose an extension to the Dipo-
lar PB model, called the Yukawa Langevin Poisson-
Boltzmann (YULP) model. Unlike in DPBE and PBLE
where the dipoles interact only through electrostatics, we
introduce an additional attractive field at each position
in the lattice, that derives from a Yukawa potential. We
show that inclusion of this attractive term is important in
predicting the dielectric response in water induced by a
biomolecule. The computed radial water density profiles
show two layers of hydration around the solute. These
water density profiles are then used to derive a simple
excess free energy that can discriminate correct from in-
correct protein models.

The dipolar Poisson-Boltzmann model is described in
full details in Abreshkin et al [10] and Azuara et al
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[11, 12]. Briefly, we represent the water surrounding
the solutes of interest as a set of orientable dipoles of
constant module p0 and bulk concentration cb

dip. These
water dipoles are distributed on a lattice to approximate
the excluded-volume effects In the lattice gas formalism,
the domain outside the boundary of the molecule is rep-
resented as a three dimensional lattice with N uniformly
sized cuboids, of size a3, where a, the lattice spacing,
is set to the geometrical dimension of the dipoles. As
a first approximation, we assume that the dipoles are
hard spheres of fixed sizes. The solute is described by
a constant charge density ρf and a solvent accessibility
function γ(~r) that is zero for points inside the envelope
of the solute and one otherwise. This envelope can be
taken as the molecular surface or the accessible surface
of the solute.

Each site in the lattice can contain at most one dipole.
If it is empty, its energy is 0. The energy of one dipole
of constant magnitude p0 at position ~r is obtained as the
Boltzmann-weighted average of the interaction −~p0 · ~E
over all orientations of ~p0, where ~E is the local electric
field. To mimic correlation effects between dipoles in a
way compatible with a mean field approach, we add a
Yukawa field Ψ(~r) to the energy of a dipole present at
position ~r in the lattice. A similar approach was used by
Coalson and colleagues to account for free ions steric re-
pulsion in their lattice field theory of a Coulomb gas with
finite size particles [13]. This Yukawa field is derived from

a Yukawa potential VY (r) = −v0
e−r/b

r
with two charac-

teristic lengths b and lY = βv0 where β = 1
kBT

. This
Yukawa potential is attractive to account for interactions
between water molecules; we do not consider a repulsive
term, as steric effects are accounted for by the lattice.

Following the formalism introduced by Borukhov et al
[14], the grand canonical partition function Zl(~r) for the
lattice site at position ~r is then given by

Zl(~r) = 1 + λdipe
−βΨ(~r)sinhc(u) (1)

where λdip is the fugacity of the dipoles, u = βp0| ~E(~r)|
and sinhc(u) = sinh(u)/u.

The free energy functional for the whole lattice in-
cludes the electrostatic energy, the functional form for
the energy of the Yukawa field, the energy of the fixed
charges and the logarithm of the partition function Zl

defined in equation 1:

βF = −
β

2

∫

d~rǫ0|~∇Φ(~r)|2

+
β

2v0

∫

d~r

(

|~∇Ψ(~r)|2 +
Ψ(~r)2

b2

)

+ β

∫

d~rρf (~r)Φ(~r)

−
1

a3

∫

d~r ln(Zl(~r)) (2)

Writing δF
δΦ = 0 and δF

δΨ = 0, we get a system of two
differential equations, which we refer to as the YUkawa
Langevin Poisson-Boltzmann (YULP) equations:

1. A PBL equation [12] in Φ in which λdip is replaced
by λdipe

−βΨ(~r):

~∇ ·

(

ǫ0~∇Φ(~r) + γ(~r)βp2
0

λdipe
−βΨ(~r)F1(u)

a3Zl(~r)
~∇Φ(~r)

)

=

−ρf (~r)(3)

where F1(u) = sinhc(u)
u

L(u); L(u) = 1/ tanh(u) −
1/u is the Langevin function.

2. A second order differential equation in Ψ(~r):

1

v0

(

∆Ψ −
Ψ(~r)

b2

)

= γ(~r)
1

a3

λdipe
−βΨ(~r)sinhc(u)

Zl(~r)
(4)

The bulk dipole concentration cb
dip verifies:

NAcb
dip = −

∂F

∂µdip







φ=0,Ψ=Ψbulk

(5)

As λdip = eβµdip , we get:

λdip = eβΨbulk
NAcb

dipa
3

1 −NAcb
dipa

3
(6)

The YULP equations include five parameters: the lat-
tice size a, strength p0, bulk concentration cb

dip, and the
parameters of the Yukawa field lY and b. We fix a = 2.4
Å. We set cb

dip to 55M, and p0 to its value in solution, i.e.
2.35 D. b defines the range of the Yukawa potential; it is
usually set to σ/1.8 Å, i.e. to a fraction of the diameter
σ of the hard spheres representing the water [15]. Setting
σ = 2.8 gives b = 1.55 Å. Note that full saturation of the
lattice (i.e. with one dipole for each lattice site) leads
to a maximum water density of 1/a3, i.e. approximately
twice the density of bulk water for our choice of a. lY is a
characteristic length that directly relates to the strength
of the potential. We set lY = 7.0 Å(see below).

The two equations 3 and 4 are solved numerically on
a finite domain Ω with boundaries δΩ. The domain Ω
is set to be large enough so that Φ = 0, ~E = ~0, and
Ψ = Ψbulk at the boundary δΩ. The distance between
the solute surface and the boundary is required to be at
least 2lB where lB is the Bjerrum length (equal to 7 Å
in water at T = 300K). From equations 4 and 6, we get
βΨbulk = −lY b2NAcb

dip. With cb
dip = 55M and b and lY

set to the values given above, we get βΨbulk = −0.55.

We use a self-consistent iterative algorithm to solve
for Φ(~r) and Ψ(~r). Full details on the algorithm will be
published separately (see also [12]).

We define ρb = NAcb
dip. The density of dipoles is given

by −∂F/∂µdip:

ρ(~r) = ρb

e−β(Ψ(~r)−Ψbulk)sinhc(u)

1 − ρba3
(

1 − e−β(Ψ(~r)−Ψbulk)sinhc(u)
) (7)
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FIG. 1: Water radial density profiles near neutral oxygens,
as a function of the distance to the center of the atom, for
different strengths of the Yukawa field. Experimental values
derived from X-ray crystallographic data [18] are shown as
open circles.

for any position ~r inside the lattice gas. When u → 0
and Ψ(~r) → Ψbulk, we get as expected ρ(~r) = ρb, i.e. the
bulk density of water.

Equation 7 gives the density of water dipoles surround-
ing the biomolecules in the presence of a Yukawa field to
model a short-range dipole-dipole attraction. We have
computed the dipole densities around 12 proteins (PDB
code 1ARB, 1CP4, 1EBD, 1PHP, 1SRP, 2ACS, 2APR,
2CTB, 2DRI, 2EXO, 2FCR, 5NLL). PDB files for each
proteins are preprocessed with PDB2PQR [16] to assign
charges and atomic radii according to the PARSE force-
field [17]. The electrostatic potential and Yukawa field
are computed on a uniform Cartesian numerical grid of
1933 points, with spacing h = 0.61 Å in all three direc-
tions. Global convergence takes 5 minutes CPU time on
a 2.8 GHz Intel Core 2 processor. These dipole densi-
ties are used to compute water radial density profiles for
each type of atoms defined in the PARSE parameter set
[17]. The density profiles are computed numerically on
line segments that are normal to the surface of an atom
and that do not intersect other parts of the protein for
at least 15 Å, with steps of size 0.1 Å.

Results are shown in figure 1 for neutral oxygens, for
different strengths of the Yukawa field and in figure 2 for
all N, O and C species, with lY set to 7.0 Å.

Figure 1 shows that increasing the strength of the
Yukawa fields increases the dielectric response of the wa-
ter to the fixed charges of the solute. Furthermore, in
the presence of the Yukawa field, at least two water lay-
ers are perturbed by the protein surface, compared to a
single layer when lY = 0. The two peaks in the radial
density profiles are distant from each other by 2.4 Å, i.e.
the size of the lattice that defines the minimal distance in
our model between two water molecules. A comparison of
water simulations in the presence of the Yukawa potential
or the Lennard Jones potential yields lY ≈ 7 Å[15]. For
lY = 7 Å, the first hydration layer corresponds to a 40%
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FIG. 2: Water radial density profiles as a function of the
distance to the center of the atom, for all N, O and C of
the PARSE data set. The characteristic length defining the
strength of the Yukawa field lY is set to 7.0 Å. For clarity, the
profiles are shown over one characteristic length. All curves
converge to a value of one (i.e. bulk water) for large distances.

increase in water density next to oxygen atoms, while the
second hydration layer corresponds to a 10% increase in
density. This is consistent with the properties of water
at protein surface reported from molecular dynamics cal-
culations [19], as well as from analyzing crystallographic
data [18]. Note however that compared to the experimen-
tal data, the profiles derived from YULP do not present
a significant trough between the two water layers.

Figure 2 shows that the first hydration layer differs,
depending on the proximity of polar or non polar solute
atoms. Hydration (i.e. water density) is found to be
strong next to net charged atoms, then weaker next to
neutral polar atoms, and even weaker next to non polar
atoms. This is in agreement with data obtained from
molecular dynamics simulations with explicit water [19,
20].

To further quantify if YULP provides an accurate pic-
ture of the organisation of water around molecules, we de-
fine a posteriori a ”solvation” free energy from the dipole
densities using the van der Waals theory of capillarity
[21]. This excess free energy is linearly related to the
integral of the square of the density gradients:

F1 =
m

2

∫

∣

∣

∣

~∇ρ(~r)
∣

∣

∣

2

d~r (8)

where m is the coefficient that relates to the surface ten-
sion [21]. This parameter m is assumed to be indepen-
dent of the density ρ. We tested the power of the F1

energy to discriminate native from non native structural
models of proteins. Two sets of misfolded structures were
considered, i.e. the four pairs of correct and incorrect
folds for haemerythrin and the Ig κ VL domain gener-
ated by Novotny and colleagues [22, 23], and a larger
set of 26 native-misfolded pairs that was later created by
Holm and Sander [24]. We compared the F1 energies of
the misfolded models to those of the native structures for
two values of lY , namely 0 (i.e. no Yukawa field), and 7
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FIG. 3: The excess free energies F1 of misfolded models com-
pared to their native counterparts (in percent of the native
free energies) are compared for two values of strength of the
Yukawa field: lY = 0 (X-axis), and lY = 7 Å(Y-axis). The
original native-misfolded pairs of Novotny [22, 23] are shown
as +, while the set created by Holm and Sander [24] is shown
as o. Positive values indicate that the native conformation
has a lower energy than its misfolded counterpart. Values
above the diagonal indicate that the Yukawa field improves
discrimination of the native fold.

Å. Results are shown in figure 3.
In the absence of Yukawa field, the F1 energy of the

native model is better (lower) than the energy of its
misfolded counterparts for 26 of the 30 native-misfolded
pairs. Out of the four that are incorrectly predicted,
only one remains marginally incorrect when the Yukawa
field is added. The remaining error corresponds to the
native-misfolded pair (1PPT,1PPT ON 1CBH). 1PPT is
a small helical protein of 36 residues, while 1CBH is a
small β-sheet proteins; both do not have well defined
cores, and as such most charges remain exposed to the
solvent; it is therefore not too surprising that F1 cannot
distinguish the two models, as it only measures the water
response to exposed charges of the solute protein.

Water plays a central role in biology as it defines the
structures and properties of biomolecules. As such, it is
the focus of many theoretical and computational mod-
eling [25]. Recent models describe fine-scale properties
with increased structural details, at heavy computational
costs. The formalism presented here aims at character-
izing the water surrounding macromolecules at an inter-
mediate level of detail. It combines the standard PB
model with a water model based on discrete non overlap-
ping dipoles interacting through both electrostatics and
an attractive Yukawa field. Our formalism is simple and
its equations can be solved numerically with little com-
putational cost; as such, it represents an attractive alter-
native to the computationally demanding explicit solvent
models. It is general enough however to give a realistic
picture of the dielectric response of water to the presence
of a charged biomolecule. We have shown that this di-
electric response leads to an organization of water into

hydration layers that can be quantified into an excess
free energy which proves useful to distinguish native from
misfolded models of molecules. This formalism is not de-
prived of limitations. It is a mean-field treatment and
as such lack long-range explicit correlations [26]. It does
not account for the well-structured hydrogen bonds net-
work between water molecules. Also, it is currently based
on a symmetric model for water that cannot account for
the specific packing observed in water. We are currently
working on possible remediations of these issues.
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