J. Lipfert, J. Franklin, F. Wu and S. Doniach Protein misfolding and amyloid formation for the peptide GNNQQNY from yeast prion protein Sup35: simulation by reaction path annealing. J. Mol. Biol. 349, 648-658 (2005). P. Eastman, N. Gronbech-Jensen and S. Doniach Simulation of protein folding by reaction path annealing. J. Chem. Phys. 114, 3823-3841 (2001).
P. Eastman, N. Gronbech-Jensen and S. Doniach Simulation of protein folding by reaction path annealing. J. Chem. Phys. 114, 3823-3841 (2001).
L. Onsager and S. Machlup Fluctuations and irreversible processes. Phys. Rev. 91, 1505-1512 (1953). N.G. van Kampen Stochastic processes in physics and chemistry. Elsevier. North Holland Personal Library. (1985). M. Tirion Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett. 77, 1905-1908 (1996). P.G. de Gennes Kramers theory revisited. J. Stat. Phys. 12, 463-481 (1975).
N.G. van Kampen Stochastic processes in physics and chemistry. Elsevier. North Holland Personal Library. (1985). M. Tirion Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett. 77, 1905-1908 (1996). P.G. de Gennes Kramers theory revisited. J. Stat. Phys. 12, 463-481 (1975).
M. Tirion Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys. Rev. Lett. 77, 1905-1908 (1996). P.G. de Gennes Kramers theory revisited. J. Stat. Phys. 12, 463-481 (1975).
P.G. de Gennes Kramers theory revisited. J. Stat. Phys. 12, 463-481 (1975).
R. Olender and R. Elber Yet another look at the steepest descent path. J. Mol. Struct. (Theochem) 398-399, 63-71 (1997). R. Olender and R. Elber Calculation of classical trajectories with a very large time step: formalism and numerical examples. J. Chem. Phys. 105, 9299-9315 (1996). J.W. Negele and H. Orland Quantum many-particle systems Addison-Wesley Frontiers in physics (1998). P. Faccioli, M. Sega, F. Pederiva and H. Orland Dominant pathways in protein folding. Phys. Rev. Lett. 97, 108101 (2006). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of protein folding. Biophys. J. 89, 1612-1620 (2005). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
R. Olender and R. Elber Calculation of classical trajectories with a very large time step: formalism and numerical examples. J. Chem. Phys. 105, 9299-9315 (1996). J.W. Negele and H. Orland Quantum many-particle systems Addison-Wesley Frontiers in physics (1998). P. Faccioli, M. Sega, F. Pederiva and H. Orland Dominant pathways in protein folding. Phys. Rev. Lett. 97, 108101 (2006). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of protein folding. Biophys. J. 89, 1612-1620 (2005). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
J.W. Negele and H. Orland Quantum many-particle systems Addison-Wesley Frontiers in physics (1998). P. Faccioli, M. Sega, F. Pederiva and H. Orland Dominant pathways in protein folding. Phys. Rev. Lett. 97, 108101 (2006). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of protein folding. Biophys. J. 89, 1612-1620 (2005). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
P. Faccioli, M. Sega, F. Pederiva and H. Orland Dominant pathways in protein folding. Phys. Rev. Lett. 97, 108101 (2006). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of protein folding. Biophys. J. 89, 1612-1620 (2005). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of protein folding. Biophys. J. 89, 1612-1620 (2005). J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
J. Wang, K. Zhang, H. Lu and E. Wang Quantifying Kinetic paths of flexible biomolecular recognition. Biophys. J. 91, 866-872 (2006).
K.I. Okazaki, N. Koga, S. Takada, J.N. Onuchic and P.G. Wolynes Multiple-basin energy-landscapes for large-amplitude conformationl motions of proteins: structure-based molecular dynamics simulations. P.N.A.S. 103, 11844-49 (2006). R.B. Best and G. Hummer. Reaction coordinates and rates from transition paths. P.N.A.S. 102, 6732-37 (2005). R.B. Best, Y.G. Chen and G. Hummer. Slow protein conformational dynamics from multiple experimental structures: the helix/sheet transition of Arc Repressor. Structure. 13, 1755-63 (2005). P. Maragakis and M. Karplus. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J. Mol. Biol. 352, 807-822 (2005). C.W. Muller, G.J. Schlauderer, J. Reinstein, G.E. Schulz. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4, 147-156 (1996).
R.B. Best and G. Hummer. Reaction coordinates and rates from transition paths. P.N.A.S. 102, 6732-37 (2005). R.B. Best, Y.G. Chen and G. Hummer. Slow protein conformational dynamics from multiple experimental structures: the helix/sheet transition of Arc Repressor. Structure. 13, 1755-63 (2005). P. Maragakis and M. Karplus. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J. Mol. Biol. 352, 807-822 (2005). C.W. Muller, G.J. Schlauderer, J. Reinstein, G.E. Schulz. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4, 147-156 (1996).